Abstract

For ideal hydrodynamic modeling of earthquake-generated tsunamis, the principal features of tsunamis occuring in nature are abstracted to provide a fundamental case of a one-dimensional solitary wave of height a, propagating in a layer of water of uniform rest depth h for modeling the tsunami progressing in the open ocean over long range, with height down to a/h ≃ 10^(−4) as commonly known. The Euler model is adopted for evaluating the irrotational flow in an incompressible and inviscid fluid to attain exact solutions so that the effects of nonlinearity and wave dispersion can both be fully accounted for with maximum relative error of O(10^(−6)) or less. Such high accuracy is needed to predict the wave-energy distribution as the wave magnifies to deliver any devastating attack on coastal destinations. The present UIFE method, successful in giving the maximum wave of height (a/h = 0.8331990) down to low ones (e.g. a/h = 0.01), becomes, however, impractical for similar evaluations of the dwarf waves (a/h < 0.01) due to the algebraic branch singularities rising too high to be accurately resolved. Here, these singularities are all removed by introducing regularized coordinates under conformal mapping to establish the regularized solitary-wave theory. This theory is ideal to differentiate between the nonlinear and dispersive effects in various premises for producing an optimal tsunami model, with new computations all regular uniformly down to such low tsunamis as that of height a/h = 10^(−4).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.