Abstract

All sampling representations of band-limited signals involve infinite sums. The truncation error associated with a given representation is defined as the difference between the signal and an approximating sum utilizing a finite number of terms. In this paper truncation error is expressed as a contour integral for Lagrange interpolation, general Hermite interpolation, the Shannon series (cardinal series), the Fogel derivative series, and multidimensional sampling expansions. Truncation error bounds are obtained under various constraints on the signal magnitude, spectral smoothness, and energy content.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.