Abstract
Motivated by findings that major components of so-called cloud ‘feedbacks’ are best understood as rapid responses to CO2 forcing (Gregory and Webb in J Clim 21:58–71, 2008), the top of atmosphere (TOA) radiative effects from forcing, and the subsequent responses to global surface temperature changes from all ‘atmospheric feedbacks’ (water vapour, lapse rate, surface albedo, ‘surface temperature’ and cloud) are examined in detail in a General Circulation Model. Two approaches are used: applying regressions to experiments as they approach equilibrium, and equilibrium experiments forced separately by CO2 and patterned sea surface temperature perturbations alone. Results are analysed using the partial radiative perturbation (‘PRP’) technique. In common with Gregory and Webb (J Clim 21:58–71, 2008) a strong positive addition to ‘forcing’ is found in the short wave (SW) from clouds. There is little evidence, however, of significant global scale rapid responses from long wave (LW) cloud, nor from surface albedo, SW water vapour or ‘surface temperature’. These responses may be well understood to first order as classical ‘feedbacks’—i.e. as a function of global mean temperature alone and linearly related to it. Linear regression provides some evidence of a small rapid negative response in the LW from water vapour, related largely to decreased relative humidity (RH), but the response here, too, is dwarfed by subsequent response to warming. The large rapid SW cloud response is related to cloud fraction changes—and not optical properties—resulting from small cloud decreases ranging from the tropical mid troposphere to the mid latitude lower troposphere, in turn associated with decreased lower tropospheric RH. These regions correspond with levels of enhanced heating rates and increased temperatures from the CO2 increase. The pattern of SW cloud fraction response to SST changes differs quite markedly to this, with large positive radiation responses originating in the upper troposphere, positive contributions in the lowest levels and patterns of positive/negative contributions in mid latitude low levels. Overall SW cloud feedback was diagnosed as negative, due to the substantial negative SW feedback in cloud optical properties more than offsetting these. This study therefore suggests the rapid response to CO2 forcing is (apart from a possible small negative response from LW water vapour) essentially confined to cloud fraction changes affecting SW radiation, and further that significant feedbacks with temperature occur in all cloud components (including this one), and indeed in all other classically understood ‘feedbacks’.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.