Abstract

The generalized Davey-Stewartson (GDS) equations, as derived by Babaoglu & Erbay (2004, Int. J. Non-Linear Mech., 39, 941-949), is a system of three coupled equations in (2 + 1) dimensions modelling wave propagation in an infinite elastic medium. The physical parameters (γ, m 1 , m 2 , λ and n) of the system allow one to classify the equations as elliptic-elliptic-elliptic (EEE), elliptic-elliptic-hyperbolic (EEH), elliptic-hyperbolic-hyperbolic (EHH), hyperbolic-elliptic-elliptic (HEE), hyperbolic-hyperbolic-hyperbolic (HHH) and hyperbolic-elliptic-hyperbolic (HEH) (Babaoglu et al., 2004, preprint). In this note, we only consider the EEE and HEE cases and seek travelling wave solutions to GDS systems. By deriving Pohozaev-type identities we establish some necessary conditions on the parameters for the existence of travelling waves, when solutions satisfy some integrability conditions. Using the explicit solutions given in Babaoglu & Erbay (2004) we also show that the parameter constraints must be weaker in the absence of such integrability conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.