Abstract
Hydrophobicity of proteins encoded in the genomes of diverse organisms was quantified using two novel concepts: (A) amino acid (AA) bulkiness-dependent hydrophobicity profiles and (B) spatial context of hydrophobicity distribution in AA triads. Both concepts were introduced into an algorithm that was used for extracting protein clusters from diverse genomic databases whose sequence attributes were similar to those in the multiple sequence alignment (MSA) of a given family of proteins. The sequences of the G protein-coupled receptors (GPCRs) encoded in different genomes were used as templates for testing the above concepts. The following sequence attributes were used for protein clustering: (A) sequence similarity scores (IDs); (B) amino acid composition (AAC); (C) hydrophobicity; (D) AA-bulkiness; and (E) alpha-helical propensity potentials. Diverse GPCRs display variable distributions of AA bulkiness-dependent buildups and declines in the hydrophobicity profiles that may be related to their function-dependent way of packing and allostery in the membrane. It is shown that intramolecular transversal nonbonded interactions between the TM segments in diverse GPCRs involve about 50% of hydrophobic atoms. Similar interaction networks exist between alpha-helices of tetratricopeptide (TPR) motifs-containing immunophilins and other proteins containing alpha-helical bundles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.