Abstract

Let G be a transitive permutation group on a set Ω such that, for ω∈Ω, the stabiliser Gω induces on each of its orbits in Ω∖{ω} a primitive permutation group (possibly of degree 1). Let N be the normal closure of Gω in G. Then (Theorem 1) either N factorises as N=GωGδ for some ω, δ∈Ω, or all unfaithful Gω-orbits, if any exist, are infinite. This result generalises a theorem of I. M. Isaacs which deals with the case where there is a finite upper bound on the lengths of the Gω-orbits. Several further results are proved about the structure of G as a permutation group, focussing in particular on the nature of certain G-invariant partitions of Ω. 1991 Mathematics Subject Classification 20B07, 20B05.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.