Abstract
Long-run stochastic stability is a precondition for applying steady-state simulation output analysis methods to a discrete-event stochastic system, and is of interest in its own right. We focus on systems whose underlying stochastic process can be represented as a Generalized Semi-Markov Process (GSMP); a wide variety of stochastic systems fall within this framework. A fundamental stability requirement for an irreducible GSMP is that the states be “recurrent” in that the GSMP visits each state infinitely often with probability 1. We study recurrence properties of irreducible GSMPs with finite state space. Our focus is on the “clocks” that govern the occurrence of events, and we consider GSMPs in which zero, one, or at least two simultaneously active events can have clock-setting distributions that are “heavy tailed” in the sense that they have infinite mean. We establish positive recurrence, null recurrence, and, perhaps surprisingly, possible transience of states for these respective regimes. The transience result stands in strong contrast to Markovian or semi-Markovian GSMPs, where irreducibility and finiteness of the state space guarantee positive recurrence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Modeling and Computer Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.