Abstract

The Polysolenoid Linear Motor (PLM) have been playing a crucial role in many industrial aspects due to its functions, in which a straight motion is provided directly without mediate mechanical actuators. Recently, with several commons on mathematic model, some control methods for PLM based on Rotational Motor have been applied, but position, velocity and current constraints which are important in real systems have been ignored. In this paper, position tracking control problem for PLM was considered under state-independent disturbances via min-max model predictive control. The proposed controller forces tracking position errors converge to small region of origin and satisfies state including position, velocity and currents constraints. Further, a numerical simulation was implemented to validate the performance of the proposed controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.