Abstract

Coloring of the graph products, especially vertex and edge coloring, has been widely researched for all types of graph products. For total graph coloring, as combination of edge and vertex coloring, Behzad and Vizing set Total Coloring Conjecture in mid 1960s. In this paper, we prove the conjecture for two specific direct graph products, for direct product of path and arbitrary graph G, Pn×G, where χ′(G)=Δ(G), and expand the proof onto direct product of arbitrary cycle and a path Pn, Cm×Pn. At the same time, the proofs provide the algorithms to color such graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.