Abstract

Let $K$ be a local field with algebraically closed residue field and $X_K$ a torsor under an elliptic curve $J_K$ over $K$. Let $X$ be a proper minimal regular model of $X_K$ over the ring of integers of $K$ and $J$ the identity component of the Neron model of $J_K$. We study the canonical morphism $q\colon \mathrm{Pic}^{0}_{X/S}\to J$ which extends the biduality isomorphism on generic fibres. We show that $q$ is pro-algebraic in nature with a construction that recalls Serre's work on local class field theory. Furthermore we interpret our results in relation to Shafarevich's duality theory for torsors under abelian varieties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.