Abstract

We consider spatial databases and queries definable using first-order logic and real polynomial inequalities. We are interested in topological queries: queries whose result only depends on the topological aspects of the spatial data. Two spatial databases are called topologically elementary equivalent if they cannot be distinguished by such topological first-order queries. Our contribution is a natural and effective characterization of topological elementary equivalence of closed databases in the real plane. As far as topological elementary equivalence is concerned, it does not matter whether we use first-order logic with full polynomial inequalities, or first-order logic with simple order comparisons only.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.