Abstract

In this work, we consider the numerical solution of the nonlinear Schrödinger equation with a highly oscillatory potential (NLSE-OP). The NLSE-OP is a model problem which frequently occurs in recent studies of some multiscale dynamical systems, where the potential introduces wide temporal oscillations to the solution and causes numerical difficulties. We aim to analyze rigorously the error bounds of the splitting schemes for solving the NLSE-OP to a fixed time. Our theoretical results show that the Lie–Trotter splitting scheme is uniformly and optimally accurate at the first order provided that the oscillatory potential is integrated exactly, while the Strang splitting scheme is not. Our results apply to general dispersive or wave equations with an oscillatory potential. The error estimates are confirmed by numerical results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call