Abstract

Abstract Laplace's tidal equations are augmented by dissipation in a bottom boundary layer that is intermediate in character between those of Ekman and Stokes. Laplace's tidal equation for a global ocean remains second-order and self-adjoint, but the operator and eigenvalues are complex with imaginary parts are O(E½), where E = ν/2ωh2 (ν is the vertical component of the kinematic eddy viscosity, ω the rotational speed of the Earth, and h the depth of the global ocean). The imaginary part of the eigenvalue is expressed as a quadratic integral of the corresponding Hough function. The Q for a free oscillation is expressed as the ratio of two quadratic integrals that represent the mean energy and dissipation rates. Approximate calculations for the semidiurnal tides (with azimuthal wave number 2) are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.