Abstract

 
 
 In this paper, the system performance of an energy harvesting (EH) unmanned aerial vehicle (UAV) system for use in disasters was investigated. The communication protocol was divided into two phases. In the first phase, a UAV relay (UR) harvested energy from a power beacon (PB). In the second phase, a base station (BS) transmitted the signal to the UR using non-orthogonal multiple access (NOMA); then, the UR used its harvested energy from the first phase to transfer the signal to two sensor clusters, i.e., low-priority and high-priority clusters, via the decode-and-forward (DF) technique. A closed-form expression for the throughput of the cluster heads of these clusters was derived to analyze the system performance. Monte Carlo simulations were employed to verify our approach.
 
 
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.