Abstract
Some fifteen years ago, Shuler formulated three conjectures relating to the large-time asymptotic properties of a nearest-neighbor random walk on ℤ2 that is allowed to make horizontal steps everywhere but vertical steps only on a random fraction of the columns. We give a proof of his conjectures for the situation where the column distribution is stationary and satisfies a certain mixing codition. We also prove a strong form of scaling to anisotropic Brownian motion as well as a local limit theorem. The main ingredient of the proofs is a large-deviation estimate for the number of visits to a random set made by a simple random walk on ℤ. We briefly discuss extensions to higher dimension and to other types of random walk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.