Abstract

Thermal stability in a stockpile of reactive materials that are assumed to lose heat to the surrounding environment by convection and radiation is studied in this article. The reactant (O2) consumption is also considered and the investigation is modeled in a rectangular slab. The complicated combustion process results with nonlinear interactions and therefore, the nonlinear differential equations governing the problem are solved numerically with the Runge-Kutta Fehlberg Method (RKF45) that is coupled with the Shooting Technique. The behaviors of the temperature and the reactant, due to effects of some embedded kinetic parameters, are depicted graphically and discussed accordingly. The results show that kinetic parameters that increase the temperature of the system, correspondingly increase the reactant consumption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.