Abstract

Numerical analysis of the heat balance at the flash event during flash sintering of granular ceramic nanoparticles was performed assuming continuum solid state as well as simultaneous surface softening/liquid formation and current percolation through the nanoparticle contacts. Assuming inter-particle radiations in the specimen volume, the electric Joule heat generated at the nanoparticle contacts partially lost by radiation from the specimen external surfaces. Considering the thermal effects due to rapid heating rate and free-molecular heat conduction regime, high-temperature gradients between the nanoparticle surfaces and the surrounding gas were developed. The attractive capillary forces, induced by the particle surface softening/liquid at the percolation threshold, lead to rapid rearrangement and densification of the nanoparticles. The excess Joule heat, already at the flash event, suffices the excess internal heat that is necessary for partial or full melting. Particle surface softening/liquid formation is a transient process, hence followed by crystallization immediate after the nanoparticle rearrangement. Thermal runaway is associated with local surface softening/melting and its solidification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.