Abstract

Abstract This study reports on the investigation of thermal and electrical properties of multiwalled carbon nanotubes reinforced copper (MWCNT/Cu) nanocomposites. The nanocomposites were fabricated with different weight fractions of MWCNTs by powder metallurgy technique followed by hot forging as secondary process. The thermal properties of hot forged nanocomposites were measured by Laser flash technique at 473 K. The results indicated that the thermal conductivity of MWCNT/Cu nanocomposites decreased with the increase in MWCNTs content. The drop in the thermal conductivity of nanocomposites is mainly attributed to the interface thermal resistance, scattering of phonons on dislocations, random distribution of MWCNTs and the kinks formed in MWCNTs during the fabrication. The decrease in electrical conductivity of nanocomposites is attributed to the grain refinement caused by the incorporation of MWCNTs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call