Abstract

In the present work, the yield stress of complex materials is analyzed and modeled using the Bautista-Manero-Puig (BMP) constitutive equation, consisting of the upper-convected Maxwell equation coupled to a kinetic equation to account for the breakdown and reformation of the fluid structure. BMP model predictions for a complex fluid in different flow situations are analyzed and compared with yield stress predictions of other rheological models, and with experiments on fluids that exhibit yield stresses. It is shown that one of the main features of the BMP model is that it predicts a real yield stress (elastic solid or Hookean behavior) as one of the material parameters, the zero shear-rate fluidity, is zero. In addition, the transition to fluid-like behavior is continuous, as opposed to predictions of more empirical models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call