Abstract
For an integer $d\geq 2$ which is not a square, we show that there is at most one value of the positive integer $X$ participating in the Pell equation $X^2-dY^2=\pm 1$ which is a Tribonacci number, with a few exceptions that we completely characterize.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.