Abstract

The temperature and luminosity of the boundary layer of VW Hyi are constrained to kT(BL) of about 10.5 eV, and L(BL) of about 6 x 10 to the 32nd (d/65 pc)squared ergs/sec. This is based on Voyager far- and extreme-ultraviolet spectrophotometry and a measurement of the column density of neutral hydrogen, combined with Exosat LE filter observations. Results are compared with the accretion-disk luminosity found by Polidan et al. (1990) using concurrent optical, IUE, and Voyager spectrophotometric observations. The value of zeta is found to be about 0.04, although theoretical predictions show comparable luminosities at the boundary layer and the accretion disk - zeta is identical to L(BL)/L(disk), which is about 1 - unless the white dwarf rotates very rapidly. Severe contamination of filter observations due to light from the inner accretion disk is also found. This contamination had previously been understood as a result of the luminous ultrasoft boundary layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call