Abstract
An intrinsic characteristic of components manufactured by the filament winding process is a winding pattern formation during the processing. This paper aims at unlocking and understanding how the winding pattern influences the mechanical behaviour of filament wound cylinders under different boundary conditions. To realize this, a series of finite element models followed by an original geometric approach to generate the pattern are herein developed. Four different patterns and six different winding angles are modelled. These are also modelled by varying the number of layers towards understanding whether there is a correlation between the pattern and the number of layers or not. Three loading cases are considered: axial compression, pure torsion, and internal pressure. Key results reveal that the more layers are stacked to the cylinder, the less impactful is the winding pattern to all loading cases herein investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.