Abstract
AbstractThe dynamics of moving contact lines in a two-phase Couette flow is investigated by using a matched asymptotic procedure. The walls are assumed to be partially wetting, and the microscopic contact angle is finite but sufficiently small so that the lubrication approach can be used. Explicit formulas are derived to characterize the shear-induced interface deformation and the critical capillary number for the onset of wetting transition. It is found that the apparent contact angle vanishes for liquid–air systems and remains finite for liquid–liquid systems when the wetting transition occurs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.