Abstract

An analytic function of several variables is considered. It is assumed that the function vanishes at some point. According to the Weierstrass preparation theorem, in the neighborhood of this point the function can be represented as a product of a nonvanishing analytic function and a polynomial in one of the variables. The coefficients of the polynomial are analytic functions of the remaining variables. In this paper we construct a method for finding the nonvanishing function and the coefficients of the polynomial in the form of Taylor series whose coefficients are found from an explicit recursive procedure using the derivatives of the initial function. As an application, an explicit formula describing a bifurcation diagram locally up to second-order terms is derived for the case of a double root.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.