Abstract

For pt. I see ibid., vol. 49, no. 12, p.2131 (2002).The Weibull slope measurement techniques described in Part I are used to determine Weibull slopes as function of thickness, voltage, and temperature. The effect of stress temperature and voltage on Weibull slopes is investigated over a wide range of voltage and temperatures for several different oxide thickness values. It was found that Weibull slopes show a strong thickness dependence while Weibull slopes are essentially independent of stress conditions such as voltages and temperature. The implications of the voltage-independent Weibull slope on voltage-dependent acceleration factors are discussed. In addition, the impact of electron injection polarity on Weibull slopes is studied in detail. To further advance understanding, we compare the measured Weibull slopes with different nitrogen incorporation processes under gate injection mode. It was found that for ultrathin oxides below 3 nm to the first order, the Weibull slopes are relatively insensitive to the nitrogen incorporation process for which we investigated. Finally, we discuss the validity of the stress-induced leakage current measurement as an experimental means to measure the critical defect density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.