Abstract

We use Newton’s method to approximate a locally unique solution of an equation in a Banach space setting. We introduce recurrent functions to provide a weaker semilocal convergence analysis for Newton’s method than before [J. Appell, E. De Pascale, J.V. Lysenko, P.P. Zabrejko, New results on Newton–Kantorovich approximations with applications to nonlinear integral equations, Numer. Funct. Anal. Optim. 18 (1997) 1–17; I.K. Argyros, The theory and application of abstract polynomial equations, in: Mathematics Series, St. Lucie/CRC/Lewis Publ., Boca Raton, Florida, USA, 1998; I.K. Argyros, Concerning the “terra incognita” between convergence regions of two Newton methods, Nonlinear Anal. 62 (2005) 179–194; I.K. Argyros, Convergence and Applications of Newton-Type Iterations, Springer-Verlag Publ., New York, 2008; S. Chandrasekhar, Radiative Transfer, Dover Publ., New York, 1960; F. Cianciaruso, E. De Pascale, Newton–Kantorovich approximations when the derivative is Hölderian: Old and new results, Numer. Funct. Anal. Optim. 24 (2003) 713–723; N.T. Demidovich, P.P. Zabrejko, Ju.V. Lysenko, Some remarks on the Newton–Kantorovich method for nonlinear equations with Hölder continuous linearizations, Izv. Akad. Nauk Belorus 3 (1993) 22–26. (in Russian); E. De Pascale, P.P. Zabrejko, Convergence of the Newton–Kantorovich method under Vertgeim conditions: A new improvement, Z. Anal. Anwendvugen 17 (1998) 271–280; L.V. Kantorovich, G.P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982; J.V. Lysenko, Conditions for the convergence of the Newton–Kantorovich method for nonlinear equations with Hölder linearizations, Dokl. Akad. Nauk BSSR 38 (1994) 20–24. (in Russian); B.A. Vertgeim, On conditions for the applicability of Newton’s method, (Russian), Dokl. Akad. Nauk., SSSR 110 (1956) 719–722; B.A. Vertgeim, On some methods for the approximate solution of nonlinear functional equations in Banach spaces, Uspekhi Mat. Nauk 12 (1957) 166–169. (in Russian); English transl.:; Amer. Math. Soc. Transl. 16 (1960) 378–382] provided that the Fréchet-derivative of the operator involved is p -Hölder continuous ( p ∈ ( 0 , 1 ] ). Numerical examples involving integral and differential equations are also provided in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.