Abstract

We develop the qualitative theory of the solutions of the McKendrick partial differential equation of population dynamics. We calculate explicitly the weak solutions of the McKendrick equation and of the Lotka renewal integral equation with time and age dependent birth rate. Mortality modulus is considered age dependent. We show the existence of demography cycles. For a population with only one reproductive age class, independently of the stability of the weak solutions and after a transient time, the temporal evolution of the number of individuals of a population is always modulated by a time periodic function. The periodicity of the cycles is equal to the age of the reproductive age class, and a population retains the memory from the initial data through the amplitude of oscillations. For a population with a continuous distribution of reproductive age classes, the amplitude of oscillation is damped. The periodicity of the damped cycles is associated with the age of the first reproductive age class. Damping increases as the dispersion of the fertility function around the age class with maximal fertility increases. In general, the period of the demography cycles is associated with the time that a species takes to reach the reproductive maturity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.