Abstract

We characterize Banach lattices on which each positive weak* Dunford-Pettis operator is weakly (resp., M-weakly, resp., order weakly) compact. More precisely, we prove that if $F$ is a Banach lattice with order continuous norm, then each positive weak* Dunford-Pettis operator $T : E \longrightarrow F$ is weakly compact if, and only if, the norm of $E^{\prime}$ is order continuous or $F$ is reflexive. On the other hand, when the Banach lattice $F$ is Dedekind $\sigma$-complete, we show that every positive weak* Dunford-Pettis operator $T: E \longrightarrow F$ is M-weakly compact if, and only if, the norms of $E^{\prime}$ and $F$ are order continuous or $E$ is finite-dimensional.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.