Abstract

The arguably simplest model for dynamics in phase space is the one where the velocity can jump between only two discrete values, ±v with rate constant k. For this model, which is the continuous-space version of a persistent random walk, analytic expressions are found for the first passage time distributions to the origin. Since the evolution equation of this model can be regarded as the two-state finite-difference approximation in velocity space of the Kramers–Klein equation, this work constitutes a solution of the simplest version of the Wang–Uhlenbeck problem. Formal solution (in Laplace space) of generalizations where the velocity can assume an arbitrary number of discrete states that mimic the Maxwell distribution is also provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.