Abstract
A systematic study is presented in order to reveal the occurrence of wall slip of pre-prepared elastomeric samples characterized with the use of rotational rheometry. To exclude effects that could be attributed to additional functional fillers, both an unfilled (primarily used) and lightly silica reinforced (complementary system) silicone rubber are evaluated. Cylindrical samples are prepared by casting using a standardized methodology and examined by means of a stress-controlled parallel-plate rotational rheometer. As a control test, samples are also cured within the rheometer (in situ), thereby fixing them to the measuring plates and firmly establishing their response in “no-slip” conditions. The experiments suggest that wall slip, postulated to be caused by an adhesive failure at the sample-plate interface, may occur if the deformation is sufficiently large and no cohesive failure is present. It is detected by an increase in the loss modulus that is related to the adhesive failure associated with local dynamic friction, resulting in increased dissipated energy. Direct (via raw waveform data and normalized Lissajous figures) and indirect (via fast-Fourier-transformation) analysis of the overall system response for a single steady state deformation cycle provided further insights into the mechanism of wall slip.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.