Abstract

The influence of the length-to-depth aspect ratio and of wall asymmetry on the main vortical flow structures evolving in rectangular two-dimensional deep cavities is studied experimentally using wall-pressure and particle image velocimetry (PIV) measurements. Wall-pressure and cavity flow statistics have been analyzed and shown that the flow features are strongly affected especially by the asymmetry. An emphasis is given concerning the behavior of the shear layer oscillations that are compared to the analytical deep-cavity model prediction proposed by P.J.W. Block (NASA Tech. Note. 1976). The results show good agreement with Block’s model if the value of the convection velocity is properly adjusted. Stochastic estimation of the cavity flows demonstrates that convective structures are involved downstream of the cavity along the wall and highlights the physical nature of the pressure-producing flow structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.