Abstract

Abstract In this correspondence, we prove the von Bahr–Esseen moment inequality for pairwise independent random vectors in Hilbert spaces. Our constant in the von Bahr–Esseen moment inequality is better than that obtained for the real-valued random variables by Chen et al. [The von Bahr–Esseen moment inequality for pairwise independent random variables and applications, J. Math. Anal. Appl. 419 (2014), 1290–1302], and Chen and Sung [Generalized Marcinkiewicz–Zygmund type inequalities for random variables and applications, J. Math. Inequal. 10(3) (2016), 837–848]. The result is then applied to obtain mean convergence theorems for triangular arrays of rowwise and pairwise independent random vectors in Hilbert spaces. Some results in the literature are extended.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.