Abstract
This paper reviews the phenomenon of volumetric hardening, which is a common feature of the mechanical behaviour of many geo-materials. Three different material idealizations have been proposed to describe this hardening, and the paper contains the corresponding mathematical formulation. These idealizations vary in their complexity and hence their ability to capture different aspects of real material behaviour. Any of the three postulates can be implemented into most constitutive models. As a demonstration of their capabilities, the postulates have been implemented into the well-known modified Cam Clay model, and computations are made with the resulting new constitutive models. It is seen that the new models can successfully represent important features of soil behaviour such as plastic yielding associated with loading inside the current virgin yield surface, the loosening or densifying of granular soils caused by shearing, and the accumulation of both volumetric and distortional deformation caused by repeated drained loading over a large number of cycles. Copyright © 2000 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical and Analytical Methods in Geomechanics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.