Abstract
The first author and D. Kunszenti-Kovács (2010) [1] proved that if the volume of the intersection of three geodesic balls of a complete connected Riemannian manifold depends only on the center–center distances and the radii of the balls, then the manifold is one of the simply connected spaces of constant curvature. In this paper, we study the geometrical consequences of the analogous condition for pairs of geodesic balls. We show that in a complete, connected and simply connected Riemannian manifold, the volume of the intersection of two small geodesic balls depends only on the distance between the centers and the radii if and only if the space is harmonic. It is also shown that if in a Riemannian manifold the volume of the intersection of two small geodesic balls of equal radii depends only on the distance between the centers and the common value of the radii, then the space is Einstein, and if we assume in addition that the space is symmetric, then it must be Osserman and hence two-point homogeneous.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.