Abstract

In this paper, we visualise and analyse the dynamics of fractals (Julia and Mandelbrot sets) for complex polynomials of the form T(z)=zn+mz+r\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$T(z) = z^{n} + mz + r$$\\end{document}, where n≥2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$n \\ge 2$$\\end{document} and m,r∈C\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$m, r \\in \\mathbb {C}$$\\end{document}, by adopting the viscosity approximation type iteration process which is most widely used iterative method for finding fixed points of non-linear operators. We establish a convergence condition in the form of escape criterion which allows to adapt the escape-time algorithm to the considered iteration scheme. We also present some graphical examples of the Mandelbrot and Julia fractals showing the dependency of Julia and Mandelbrot sets on complex polynomials, contraction mappings, and iteration parameters. Moreover, we propose two numerical measures that allow the study of the dependency of the set shape change on the values of the iteration parameters. Using these two measures, we show that the dependency for the considered iteration method is non-linear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.