Abstract

The dependence of dielectric relaxation time on the viscosity of the medium is being extensively used to draw certain quantitative conclusions regarding molecular motion and inter-molecular forces in liquids, liquid mixtures, dilute solutions, and multi-component polar solutes in dilute solution. In the absence of proper empirical or theoretical equations for the variation of dielectric relaxation time with viscosity, only the experimental investigations on different systems can give an insight. In the present study, the results of dielectric measurements carried out on pure samples of bromohexane, bromooctane and bromodecane in dilute solutions in different mixed solvents (benzene + paraffin) and on binary mixtures (1 : 1) of (bromohexane + bromodecane); (bromodecane + propyl alcohol) and (propyl alcohol + methyl alcohol) are reported. For comparison, the results of bromodecane + propyl alcohol and propyl alcohol + methyl alcohol are chosen as they form examples of mixture of non-associative + associative and associative + associative liquids, respectively. Different parameters determined using these dielectric measurements are also presented using different models. These studies indicate that the dielectric behavior at microwave frequencies favor the concept of dynamic viscosity and a single viscoelastic relaxation time for the systems under study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.