Abstract

We studied the properties of the intramolecular vibrational excitation (vibron) at finite temperature in a system which consists of two parallel macromolecular chains. It was assumed that vibron interacts exclusively with dispersionless optical phonons and the whole system is considered to be in thermal equilibrium. Particular attention has been paid to the examination of the impact of the temperature and strength of the interchain coupling on the small polaron crossover. For that purpose we employed partial dressing method which enables the study of the degree of the phonon dressing of the vibron excitations in a wide area of system parameter space. We found that in the non-adiabatic regime the degree of dressing as a function of coupling constant continuously increases reflecting the smooth transition of the slightly dressed, practically free vibron, to a heavily dressed one: small polaron. As “adiabaticity” rises this transition becomes increasingly steeper, and finally, in the adiabatic limit, a discontinuous “jump” of the degree of dressing is observed. The interchain coupling manifests itself through the increase of the effective adiabatic parameter of the system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call