Abstract

In this paper, an analytical procedure is given to study the free vibration of the laminated homogeneous and non-homogeneous orthotropic conical shells with freely supported edges. The basic relations, the modified Donnell type motion and compatibility equations have been derived for laminated orthotropic truncated conical shells with variable Young’s moduli and densities in the thickness direction of the layers. By applying the Galerkin method, to the basic equations, the expressions for the dimensionless frequency parameter of the laminated homogeneous and non-homogeneous orthotropic truncated conical shells are obtained. The appropriate formulas for the single-layer and laminated complete conical and cylindrical shells made of homogeneous and non-homogeneous, orthotropic and isotropic materials are found as a special case. Finally, the influences of the non-homogeneity, the number and ordering of layers and the variations of the conical shell characteristics on the dimensionless frequency parameter are investigated. The results obtained for homogeneous cases are compared with their counterparts in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.