Abstract

Granular materials promise opportunities for the development of high-performance, lightweight vibration-damping elements that provide a high level of safety and comfort. Presented here is an investigation of the vibration-damping properties of prestressed granular material. The material studied is thermoplastic polyurethane (TPU) in Shore 90A and 75A hardness grades. A method for preparing and testing the vibration-damping properties of tubular specimens filled with TPU granules was developed. A new combined energy parameter was introduced to evaluate the damping performance and weight-to-stiffness ratio. Experimental results show that the material in granular form provides up to 400% better vibration-damping performance as compared to the bulk material. Such improvement is possible by combining both the effect of the pressure-frequency superposition principle at the molecular scale and the effect of the physical interactions between the granules (force-chain network) at the macro scale. The two effects complement each other, with the first effect predominating at high prestress and the second at low prestress. Conditions can be further improved by varying the material of the granules and applying a lubricant that facilitates the granules to reorganize and reconfigure the force-chain network (flowability).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.