Abstract
AbstractA subresiduated lattice is a pair , where A is a bounded distributive lattice, D is a bounded sublattice of A and for every there exists the maximum of the set , which is denoted by . This pair can be regarded as an algebra of type (2, 2, 2, 0, 0), where . The class of subresiduated lattices is a variety which properly contains the variety of Heyting algebras. In this paper we study the subvariety of subresiduated lattices, denoted by , whose members satisfy the equation . Inspired by the fact that in any subresiduated lattice whose order is total the previous equation and the condition for every are satisfied, we also study the subvariety of generated by the class whose members satisfy that for every .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.