Abstract
A random polytope is the convex hull of uniformly distributed random points in a convex body K. A general lower bound on the variance of the volume and f-vector of random polytopes is proved. Also an upper bound in the case when K is a polytope is given. For polytopes, as for smooth convex bodies, the upper and lower bounds are of the same order of magnitude. The results imply a law of large numbers for the volume and f-vector of random polytopes when K is a polytope.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.