Abstract

In this paper the implicit-explicit (IMEX) two-step backward differentiation formula (BDF2) method with variable step-size, due to the nonsmoothness of the initial data, is developed for solving parabolic partial integro-differential equations (PIDEs), which describe the jump-diffusion option pricing model in finance. It is shown that the variable step-size IMEX BDF2 method is stable for abstract PIDEs under suitable time step restrictions. Based on the time regularity analysis of abstract PIDEs, the consistency error and the global error bounds for the variable step-size IMEX BDF2 method are provided. After time semidiscretization, spatial differential operators are treated by using finite difference methods, and the jump integral is computed using the composite trapezoidal rule. A local mesh refinement strategy is also considered near the strike price because of the nonsmoothness of the payoff function. Numerical results illustrate the effectiveness of the proposed method for European and American options under jump-diffusion models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.