Abstract

The vanishing viscosity limit is considered for the incompressible 2D Navier-Stokes equations in a bounded domain. Motivated by studies of turbulent flow we suppose Navier's friction condition in the tangential direction, i.e. the creation of a vorticity proportional to the tangential velocity. We prove the existence of the regular solutions for the Navier-Stokes equations with smooth compatible data and of the solutions with bounded vorticity for initial vorticity being only bounded. Finally, we establish a uniform -bound for the vorticity and convergence to the incompressible 2D Euler equations in the inviscid limit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.