Abstract

We consider the zero-electron-mass limit for the Navier-Stokes-Poisson system in unbounded spatial domains. Assuming smallness of the viscosity coefficient and ill-prepared initial data, we show that the asymptotic limit is represented by the incompressible Navier-Stokes system, with a Brinkman damping, in the case when viscosity is proportional to the electron-mass, and by the incompressible Euler system provided the viscosity is dominated by the electron mass. The proof is based on the RAGE theorem and dispersive estimates for acoustic waves, and on the concept of suitable weak solutions for the compressible Navier-Stokes system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call