Abstract
Multiparameter optimization, the heart of drug design, is still an open challenge. Thus, improved methods for automated compound design with multiple controlled properties are desired. Here, we present a significant extension to our previously described fragment-based reinforcement learning method (DeepFMPO) for the generation of novel molecules with optimal properties. As before, the generative process outputs optimized molecules similar to the input structures, now with the improved feature of replacing parts of these molecules with fragments of similar three-dimensional (3D) shape and electrostatics. We developed and benchmarked a new python package, ESP-Sim, for the comparison of the electrostatic potential and the molecular shape, allowing the calculation of high-quality partial charges (e.g., RESP with B3LYP/6-31G**) obtained using the quantum chemistry program Psi4. By performing comparisons of 3D fragments, we can simulate 3D properties while overcoming the notoriously difficult step of accurately describing bioactive conformations. The new improved generative (DeepFMPO v3D) method is demonstrated with a scaffold-hopping exercise identifying CDK2 bioisosteres. The code is open-source and freely available.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.