Abstract

This paper is an extension to a recent paper Zhu and Lian (2009), in which a closed-form exact solution was presented for the price of variance swaps with a particular definition of the realized variance. Here, we further demonstrate that our approach is quite versatile and can be used for other definitions of the realized variance as well. In particular, we present a closed-form formula for the price of a variance swap with the realized variance in the payoff function being defined as a logarithmic return of the underlying asset at some pre-specified discretely sampling points. The simple formula presented here is a result of successfully finding an exact solution of the partial differential equation (PDE) system based on the Heston's (1993) two-factor stochastic volatility model. A distinguishable feature of this new solution is that the computational time involved in pricing variance swaps with discretely sampling time has been substantially improved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.