Abstract

Recently, Aggarwal & Keenan published a Dirac R-matrix (darc) calculation for the electron-impact excitation of Fe xiv. A 136-level configuration-interaction/close-coupling (CI/CC) expansion was adopted. Comparisons with earlier calculations, obtained by Liang et al. with the intermediate coupling frame transformation (ICFT) R-matrix method, showed significant discrepancies. One of the main differences was that the Liang et al. effective collision strengths were consistently larger. Aggarwal & Keenan suggested various possible causes for the differences. We discuss them in detail here. We have carried out an ICFT R-matrix calculation with the same 136-level CI/CC expansion adopted by Aggarwal & Keenan, and compared the results with theirs and with those of Liang et al., which employed a much larger CI/CC expansion. We find that the main differences arise because of the different CC and CI expansions, and not because of the use of the ICFT method, as suggested by Aggarwal & Keenan. The significant increase in the effective collision strengths obtained by Liang et al. is mainly due to the extra resonances that are present because of the larger target expansion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.