Abstract

The Geiger–Nuttall (GN) law relates the partial α-decay half-life with the energy of the escaping α particle and contains for every isotopic chain two experimentally determined coefficients. The expression is supported by several phenomenological approaches, however its coefficients lack a fully microscopic basis. In this paper we will show that: (1) the empirical coefficients that appear in the GN law have a deep physical meaning, and (2) the GN law is successful within the restricted experimental data sets available so far, but is not valid in general. We will show that, when the dependence of logarithm values of the α formation probability on the neutron number is not linear or constant, the GN law is broken. For the α decay of neutron-deficient nucleus 186Po, the difference between the experimental half-life and that predicted by the GN law is as large as one order of magnitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.