Abstract

Weak lensing calculations are often made under the assumption of the Born approximation, where the ray path is approximated as a straight radial line. In addition, lens-lens couplings where there are several deflections along the light ray are often neglected. We examine the effect of dropping the Born approximation and taking lens-lens couplings into account, for weak lensing effects up to second order (cosmic flexion), by making a perturbative expansion in the light path. We present a diagrammatic representation of the resulting corrections to the lensing effects. The flexion signal, which measures the derivative of the density field, acquires correction terms proportional to the squared gravitational shear; we also find that by dropping the Born approximation, two further degrees of freedom of the lensing distortion can be excited (the twist components), in addition to the four standard flexion components. We derive angular power spectra of the flexion and twist, with and without the Born-approximation and lens-lens couplings and confirm that the Born approximation is an excellent approximation for weak cosmic flexions, except at very small scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.