Abstract

For long-memory time series, inference based on resampling is of crucial importance, since the asymptotic distribution can often be non-Gaussian and is difficult to determine statistically. However, due to the strong dependence, establishing the asymptotic validity of resampling methods is nontrivial. In this paper, we derive an efficient bound for the canonical correlation between two finite blocks of a long-memory time series. We show how this bound can be applied to establish the asymptotic consistency of subsampling procedures for general statistics under long memory. It allows the subsample size $b$ to be $o(n)$, where $n$ is the sample size, irrespective of the strength of the memory. We are then able to improve many results found in the literature. We also consider applications of subsampling procedures under long memory to the sample covariance, M-estimation and empirical processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.